
1

Efficient techniques for model checking:
Symbolic techniques (ROBDD)

dr. István Majzik

dr. András Pataricza

dr. Tamás Bartha

BME Department of Measurement and Information System

2

Where are we?

• Lower-level formalisms
(KS, LTS, KTS)

• Higher-level formalisms

Temporal logics:
PLTL, CTL, CTL*

Formal model Formalized requirements

Model checker

OK Counterexample

i n

Basic
algorithms

3

Recap: Known techniques for model checking

• PLTL model checking:

 Tableau method: Decomposition based on the model

 Automata-based approach (auxiliary)

• CTL model checking:

 Semantics-based approach: Iterative labeling of states

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p, s |- X(p U q)

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p, s |- X(p U q)

s |- p U q

s |- q s |- p, s |- X(p U q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

s1 s2 sn

s

…

4

Recap: CTL model checking with state labeling

• Label states with subformulas based on Sat(..)
computation:
AF (P  E (Q U R))

• State labeling: Where does a formula hold?

 Initially: KS labeled with atomic propositions

 Iteratively: Labeling with more complex formulas

• If a state is labeled with p and q, then we can label with
p, pq, EX p, AX p, E(p U q), A(p U q)

• Incremental labeling algorithm based on the semantics of
operators

5

Recap: Iteration of the E(P U Q) labeling

• Iteration continues
while set of states
grows (until a fixed
point is reached)

{P,Q}

PPP

Kripke structure

with initial labeling

{P,Q}

PPP

E(P U Q)First step: Q

{P,Q}

PPP

E(P U Q)

E(P U Q)

Second

step: P  EX

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

Third step:

P  EX

• Exploiting:
E(P U Q) =
Q  (P  EX E(P U Q))

6

Problems

• The state space to traverse can be huge

 Concurrent systems exhibit a large state space:
Combinatorical explosion in the number of possible interleavings of
independent sequences

• How can we analyze large state spaces?

 Promise: CTL model checking: 1020, sometimes even 10100 states

 What kind of technique can deliver this promise?

P1 P2 P3 Full state space

7

Outlook: Concurrent behavior of two
automata

Direct product of automata,
interleaving, synchronization

Example: Operation of asynchronous automata

• System composed of two
(independent) automata

• States of the automata:

A = {m1, m2}, B = {s1, s2}

• (Direct) product automaton:
state space of the system

• Set of states:

C = A  B

C = {m1s1, m1s2 , m2s1 , m2s2}

m1 m2

s1 s2

m1s1 m2s1

m1s2 m2s2

A

B

C

8

Synchronizations and guards simplify the model

• Synchronization: taking the
transitions at the same time

• E.g. “A and B takes the
transition at the same time
if their state index is the
same”

• Guards: disable certain
transitions

• E.g. “B can only take the
transition if A is in state m2”

m1s1 m2s1

m1s2 m2s2

C”

m1s1 m2s1

m1s2 m2s2

C’

9

Example: Pedestrian light with button

10

R,NP R,P

G,NP G,P

• Synchronization
(press!, press?)

• Guard
(is_r == true)

Example: Alternative paths

T1 T2

x=1 y=1

g=g+2 g=g*2

(x,y,g)

(0,0,0)

(0,1,0)(1,0,0)

(1,0,2)

(1,1,2)

(0,1,0)

(1,1,0)

(1,1,4) (1,1,2)

(1,1,0)

x=1 y=1

x=1y=1

g=g+2 g=g*2

y=1
g=g+2

x=1
g=g*2

g=g*2 g=g+2
Local variables: x and y

Global variable: g

11

12

Example for large state space:
Dining philosophers

• Concurrent system

 May have deadlock

 May have livelock

• State space grows fast

Source: wikipedia

#Philosophers #States

16 4,7  1010

28 4,8  1018

… …

200 > 1040

1000 > 10200

… …
With smart (but not task-specific)

state space representation:

~100 000 philosophers, i.e.

1062900 states can be checked!

264 = 1,8  1019

http://upload.wikimedia.org/wikipedia/commons/6/6a/Dining_philosophers.png

13

Overview of the techniques to learn

• CTL model checking: Symbolic technique

• Model checking of invariants: Bounded model checking

 Searching satisfying valuations for Boolean fordmulas with SAT
techniques

 Model checking to a given depth:
Searching for counterexamples with bounded length

• A detected counterexample is always valid

• No counterexamples does not imply correctness

Semantics-based technique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations on sets of states Efficient operations on ROBDDs

14

Symbolic model checking

15

Recap: Iteration using set operations

• We expand the labeling using operations on sets
 Initial set: states already labeled by subformulas

 Expanding the labeling:
• E(p U q): “At least one successor is labeled …”

• A(p U q): “All successors are labeled …”

 This way we can label preceding states

• How can we define the set of preceding states?
 Based on set of already labeled states Z:

preE(Z) = {sS | there exists s’ such that (s,s’)R and s’Z}

preA(Z) = {sS | for all s’ such that (s,s’)R we have s’Z}

• Example: E(P U Q):
 Initial set: Z0 = {s | QL(s)}

 Expansion: Zi+1= Zi  (preE(Zi)  {s | PL(s)})

 End of the iteration: if Zi+1= Zi (fixedpoint)

Predecessors of

already labeled states
labeled P

Labeled so far

At least one

successor is

labeled

All successors

are labeled

16

Main idea

• Representation of and operations on sets of states:
With Boolean functions instead of enumeration

 Encoding a state with a bit-vectors

• To encode a set of states S we need at least n=log2|S| bits,
so choose n such that 2n|S|

 Encoding a set of states with an n-ary Boolean function:
Characteristic function

• The function should be true for a bit-vector iff the state
encoded by the bit-vector is in the given set of states

• Characteristic function: C: {0,1}n{0,1}

 We will perform operations on characteristic functions
instead of sets

17

Characteristic functions

• For a state s: Cs(x1, x2, …, xn)

Let the encoding of s be the bit-vector (u1, u2, …, un), where ui{0,1}

Goal: Cs(x1, x2, …, xn) should return be true only for (u1, u2, …, un)

Construction of Cs(x1, x2, …, xn): with operator 

• xi is an operand if ui=1

• xi is an operand if ui=0

Example: for state s with encoding (0,1): Cs(x1, x2) =  x1  x2

• For a set of state YS: CY(x1, x2, …, xn)

Goal: CY(x1, x2, …, xn) should be true for parameters (u1, u2, …, un)
iff (u1,u2,…, un)Y

Construction of CY(x1, x2, …, xn):

CY(x1, x2, …, xn)=sYCs(x1, x2, …, xn)

• For sets of states in general:

CYW= CY  CW, CYW= CY  CW

18

Example: Characteristic function of states

s1

s2

s3

(0,0)

(0,1)

(1,1)

Characteristic functions of states:

State s1:
Cs1(x,y) = (x  y)

State s2:

Cs2(x,y) = (x  y)

State s3:

Cs3(x,y) = (x  y)

Characteristic function for a set of states:

Set of states {s1,s2}:
C{s1,s2} = Cs1  Cs2 = (x  y)  (x  y)

Variables: x, y

19

Characteristic functions (cont’d)

• For state transitions: Cr

r=(s,t) transition, where s=(u1, u2, …, un) and t=(v1, v2, …, vn)

 Characteristic function in the form Cr(x1, x2, …, xn, x’1, x’2, …, x’n)

• „Primed” variables denote the target state

Goal: Cr should be true iff xi=ui and xi’=vi

Construction of Cr:

Cr = Cs (x1, x2, …, xn)  Ct(x’1, x’2, …, x’n)

s t

(u1, u2, …, un) (v1, v2, …, vn)

r

20

Example: Characteristic functions of transitions

s1

s2

s3

(0,0)

(0,1)

(1,1)

Transition relation:
R(x,y,x’,y’) = (xy   x’ y’) 

 (x y  x’ y’) 
 (x y   x’ y’) 
 (x y   x’y’)

State s1:
Cs1(x,y) = (x  y)

State s2:

Cs2(x,y) = (x  y)

Transition (s1,s2)R:
C(s1,s2) = (x  y)  (x’  y’)

21

Characteristic functions (cont’d)

• Construction of preE(Z): preE(Z)={s | t: (s,t)R and tZ}

Representation of Z: CZ

Representation of R: CR=rRCr

preE(Z): find predecessor states for states of Z

where xC = C[1/x]  C[0/x] („existential abstraction”)

• Model checking with set operations:
reduced to operations with Boolean functions!

 Union of sets: Disjunction of functions ()

 Intersectin of sets: Conjunction of functions ()

 Construction of preE(Z): Complex operation (existential abstraction)

E 1 2

'

pre () ' , ' ,..., 'nZ x x x R ZC C C  

22

Representation of Boolean functions

Canonic form: ROBDD

Reduced, Ordered Binary Decision Diagram

“Phases” (overview):

• Binary decision tree: to represent binary decisions

• BDD: identical subtrees are merged

• OBDD: evaluation of variables in the same order
on every branch

• ROBDD: reduction of redundant nodes

 If both two outcomes (branches) lead to the same node

23

ROBDDs in detail

24

Binary decision trees

• Final result is determined

by a series of decisions

• Binary decisions in every

node

 Yes/No branches

• Final result after every

necessary decision has

been made:

 Yes (1) / No (0)

There are multivalued

extensions

Do I have a car?

Do I have a

bicycle?
Do I have fuel?

0 1 0

Are the batteries
OK?

0
1

I’ll go

I’ll go
I’ll stay
at home

I’ll stay

at home

I’ll stay
at home

25

Boolean functions as binary decision trees

• Substitution (valuation) of a variable is a decision

• Notation: if-then-else

 The result is the value of f1 if x is true (1)

 The result is the value of f0 if x is false (0)

 x is the test variable, checking its value is a test

• Shannon decomposition of Boolean functions:

 The function is decomposed with if-then-else

 The test variable is reduced, will not appear in fx , fx

 Repeat until there is a variable left

x  f1, f0 = (x  f1)  (x  f0)

f = x  f [1/x], f [0/x]
let fx = f [1/x] ; fx = f [0/x]

f = x  fx , fx

26

Types of decision trees

• We get a binary decision diagram (BDD),

if we merge all identical subtrees

• We get an ordered binary decision diagram (OBDD),

if we use test variables in the same order during decomposition

• We get a reduced ordered binary decision diagram (ROBDD),

if we remove redundant nodes (where both decisions lead to the same

node)

Example:

f(x,y)

Potential values of f(x,y)
should be specified in the
boxes (leaf/terminal nodes)

x

y y

0/1 0/1 0/1 0/1

f[x=1, y=1] f[x=1, y=0] f[x=0, y=1] f[x=0, y=0]

f[x=1] f[x=0]

f

27

Example:
Transformation of a binary decision diagram

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

Binary
decision tree

Reduced
decision tree

BDD ROBDD

28

ROBDD properties

• Directed, acyclic graph with one root and two leaves

 Values of the two leaves are 1 and 0 (true and false)

 Every node is assigned a test variable

• From every node, two edges leave

 One for the value 0 (notation: dashed arrow)

 The other for the value 1 (notation: solid arrow)

• On every path, test variables are in the same order

• Isomorphic subgraphs are merged

• Nodes from with both edges would point to the same node

are reduced

For a given function, two ROBDDs with the same variable

ordering are isomorphic

29

Variable ordering for ROBDDs

• Size of ROBDD

 For some functions (e.g. even number of 1’s) very compact

 For others (such as XOR) it may have an exponential size

• The order of variables has a great impact on the size!

 A different order may cause an order of magnitude difference

 Problem of finding an optimal ordering is NP-complete (heuristics)

• Memory requirements: If the ROBDD is built by combining
functions one by one, we will store intermediate nodes
which can be reduced later

ROBDD
méret

Építés
lépései

ROBDD
méret

Építés
lépései

Size of
ROBDD

Steps of
construction

30

Example: Manual construction of an ROBDD

Let

f = (a  b)  (c  d)

Variable ordering: a, b, c, d

• f = afa, fa
fa=(1b)(cd), fa=(0b)(cd)

• fa = bfa,b, fa,b

fa,b= (11)(cd) = (cd)

fa,b=(10)(cd) = 0

• fa = bfa,b, fa,b

fa,b = (01)(cd) = 0

fa,b = (00)(cd) = (cd)

• fa,b = cfa,b,c, fa,b,c

fa,b,c = (1d), fa,b,c=(0d)

• fa,b,c = dfa,b,c,d, fa,b,c,d

fa,b,c,d = (11) = 1,

fa,b,c,d = (10) = 0

• fa,b,c = dfa,b,c,d, fa,b,c,d

fa,b,c,d = (01)=0, , fa,b,c,d=(00)=1

fa,b and fa,b are
isomorphic!

1 0

dd

a

f

b
f
a

b
f
a

c
f
a,b

fa,b,c
fa,b,c

31

Storing an ROBDD in memory

• Nodes of the ROBDD are
identified by Ids (indices)

• The ROBDD is stored in a table
T: u  (i,l,h):

 u: index of node

 i: index of variable (xi, i=1…n)

 l: index of the node reachable
through edge corresponding to 0

 h: index of the node reachable
through edge corresponding to 1

u i l h

0

1

2 4 1 0

3 4 0 1

4 3 2 3

5 2 4 0

6 2 0 4

7 1 5 6

xi

u

h l

low

high

32

Storing an ROBDD in memory

u i l h

0

1

2 4 1 0

3 4 0 1

4 3 2 3

5 2 4 0

6 2 0 4

7 1 5 6

x
4

x
4

x
3

x
2 x

2

x
1

23

4

5
6

7
x1

x2

x2

x3

1 0

x4
x4

f

f
a

f
a

f
a,b

1 0

33

Handling ROBDDs 1.

• Defined operations:

 init(T)

• Initializes table T

• Only the terminal nodes 0 and 1 are in the table

 add(T,i,l,h):u

• Creates a new node in T with the provided parameters

• Returns its index u

 var(T,u):i

• Returns from T the index i of the node u

 low(T,u):l and high(T,u):h

• Returns the index l (or h) of the node reachable from the node
with index u through the edge corresponding to 0 (or 1)

34

Handling ROBDDs 2.

• To look up ROBDD nodes, we use another table
H: (i,l,h)  u

• Operations:

 init(H)

• Initializes an empty H

 member(H,i,l,h):t

• Checks if the triple (i,l,h) is in H; t is a Boolean value

 lookup(H,i,l,h):u

• Looks up the triple (i,l,h) from table H

• Returns the index u of the matching node

 insert(H,i,l,h,u)

• Inserts a new entry into the table

35

Handling ROBDDs 3.

Creating nodes: Mk(i,l,h)

• Where i is the index of variable,
l and h are the branches

• If l=h, i.e. the branches would
lead to the same node

 then we don’t need new a node

 we can return any branches

• If H already contains a triple
(i,l,h)

 then we don’t need a new node

 There exists an isomorphic
subtree, return that

• If H does not contain such a
triple (i,l,h)

 then we need to create it and
return its index

Mk(i,l,h){

if l=h then

return l;

else if member(H,i,l,h) then

return lookup(H,i,l,h);

else {

u=add(T,i,l,h);

insert(H,i,l,h,u);

return u;

}

}

36

Handling ROBDDs 4.

Building an ROBDD: Build(f) and Build’(t,i) recursive helper
function

Build(f) {

init(T); init(H);

return Build’(f,1);

}

Build’(t,i){

if i>n then

if t==false then return 0 else return 1

else {v0 = Build’(t[0/xi],i+1);

v1 = Build’(t[1/xi],i+1);

return Mk(i,v0,v1)}

}

Reached a terminal node

(every variable bound)

Recursive building;

Mk() will check
isomorphic subtrees

Will traverse variables
recursively

37

Operations on ROBDDs

• Boolean operators can be evaluated directly on ROBDDs

 Variables of the functions should be the same in the same order

• Equivalence for functions f, t (op is a Booleean operator):

1. f op t = (x  fx,fx) op (x  tx,tx) = x  (fx op tx), (fx op tx)

.

op
=

x

y y

f

fx fx

x

y y

t

tx tx

x

y y

f op t

fx op tx
fx op tx

38

Operations on ROBDDs (cont’d)

• Boolean operators can be evaluated directly on ROBDDs

 Variables of the functions should be the same in the same order

• Equivalence for functions f, t (op is a Booleean operator):

1. f op t = (x  fx,fx) op (x  tx,tx) = x  (fx op tx), (fx op tx)

• Additional rules (missing variables due to reduction):

2. f op t = (x  fx,fx) op t = x  (fx op t), (fx op t)

3. f op t = f op (x  tx,tx) = x  (f op tx), (f op tx)

• Based on these rules App(op,i,j) can be defined recursively

 where i, j: indices of the root nodes of operands

• Drawback: slow

 worst-case 2n exponential

39

Accelerated operation

• Let G(op,i,j) be a cache table that contains the

results of App(op,i,j) (these are nodes)

• The four cases of the algorithm:

 Both nodes are terminal: return a terminal based on the

Boolean operation (e.g. 0  1 = 0)

 If the variable indices for both operands are the same,

then call App(op,i,j) with the 0 branches and with the 1

one branches based on equivalence 1.

 If one variable index is less, then that node is paired

with the 0 and 1 branches of the other based on

equivalence 2. or 3.

40

Pseudo-code of the operation

Apply(op,f,t){

init(G);

return App(op,f,t);

}

App(op,u1,u2) {

if (G(op,u1,u2) != empty) then return G(op,u1,u2);

else if (u1 in {0,1} and u2 in {0,1}) then u = op(u1,u2);

else if (var(u1) = var(u2)) then

u=Mk(var(u1), App(op,low(u1),low(u2)),

App(op,high(u1),high(u2)));

else if (var(u1) < var(u2)) then

u=Mk(var(u1), App(op,low(u1),u2),App(op,high(u1),u2));

else (* if (var(u1) > var(u2)) then *)

u=Mk(var(u2), App(op,u1,low(u2)),App(op,u1,high(u2)));

G(op,u1,u2)=u;

return u;

}

41

x5

x4

x3

x2

x1

Example: Performing operation (ft)

5

3 4

2

0 1


8

6 7

5

3 4

2

0 1

f t

42

Example: Performing operation (ft)

8  5

6  3 7  4

0  3
0

0  4
05  3

3  2

2  2

4  0
0

0  2
0

1  1
1

0  0
0

5  4

4  2

2  2

3  0
0

0  2
0

1  1
1

0  0
0

8

6 7

5

3 4

2

0 1

8

6 7

5

3 4

2

0 1

5

3 4

2

0 1

5

3 4

2

0 1

f t
ft

43

Example: Performing operation (ft)

8

6 7

5

3 4

2

0 1

8

6 7

5

3 4

2

0 1

5

3 4

2

0 1

5

3 4

2

0 1

8  5

6  3 7  4

0  3
0

0  4
05  3

3  2

2  2

4  0
0

0  2
0

1  1
1

0  0
0

5  4

4  2

2  2

3  0
0

0  2
0

1  1
1

0  0
0

8  5

6  3 7  4

0  3
0

0  4
05  3

3  2

2  2

4  0
0

0  2
0

1  1
1

0  0
0

5  4

4  2

2  2

3  0
0

0  2
0

1  1
1

0  0
0

f t

ft

44

Example: Result of operation (ft)

x1

x2 x2

x3

x4 x4

x5

10

x3

=

x5

x4

x3

x2

x18

6 7

5

3 4

2

0 1

5

3 4

2

0 1

f t

45

Restricting a variable in an ROBDD

Bind variables with constants (e.g. (x  y)[y=1]= x):
The value of xj should be b in the ROBDD rooted in u

Restrict(u,j,b) {

return Res(u,j,b);

}

Res(u,j,b) {

if var(u) > j then return u;

else if var(u) < j then

return Mk(var(u),

Res(low(u),j,b),

Res(high(u),j,b));

else

if b=0 then

return Res(low(u),j,b)

else

return Res(high(u),j,b);

}

If we are lower than the
variable to bind, the original

subtree is returned

If we are higher, then we need
recursive building

If we are at the variable to bind,
we process only the branch b

46

Summary: Model checking with ROBDDs

• Realizing model checking:
 Model checking algorithm: Operations on sets of states (labeling)

 Symbolic technique: Instead of sets, use Boolean characteristic functions

 Efficient implementation: Boolean functions handled as ROBDDs

• Benefits
 ROBDD is a canonical form (equivalence of functions is easy to check)

 Algorithms can be accelerated (with caching)

 Reduced storage requirements (depends on variable ordering!)

Dining philosophers:

Instead of storing 1018 states the ROBDD takes ~21kB!

Number of
Philosophers

Size of state
space

Number of
ROBDD nodes

16 4,7 1010 747

28 4,8 1018 1347

